Fluorescence Detection of Hybrid Formation between Pyrrolidine-based Oxy-peptide Nucleic Acid and DNA

Mizuki Kitamatsu,* Masanori Shigeyasu, and Masahiko Sisido*

Department of Bioscience and Biotechnology, Faculty of Engineering, Okayama University,

3-1-1 Tsushimanaka, Okayama 700-8530

(Received June 1, 2005; CL-050705)

When an oxy-peptide nucleic acid that contains pyrrolidine rings (pyrrolidine-based oxy-PNA = POPNA) hybridized with its complementary DNA, a fluorophore, $DiSC_2(5)$, bound specifically to the hybrid in aqueous solution. Free $DiSC_2(5)$ did not fluoresce by itself, but the bound $DiSC_2(5)$ showed strong fluorescence. The fluorescence was observed only on a fully-matched POPNA–DNA hybrid, but not on hybrids with even single mismatches. This finding provides bases for highly sensitive and highly specific detection of single nucleotide polymorphisms.

Detection and analysis of single nucleotide polymorphisms (SNPs) are essential for tailor-made medical treatments. Several groups¹ reported the detection of SNPs using Nielsen-type peptide nucleic acids (PNAs) (Figure 1).² PNA is a DNA surrogate, that is a peptide of δ -amino acids with pendant nucleobases. PNA is more advantageous than DNA, because it forms more stable hybrids with DNA without repulsive forces between negative charges. PNA also resists to proteases and nucleases and shows high specificity to its complementary DNA. Therefore, PNA is very suited for the SNP analysis. Recently, several researchers reported visible detection of PNA-DNA hybrids using a cyanine dye, $DiSC_2(5)$, and applied the method to SNP analyses.^{1a,1b,3} However, because visible detection requires more than a trace amount of PNA and DNA, fluorescence detection is much more advantageous for sensitive SNP analyses. Although monomeric $DiSC_2(5)$ is highly fluorescent, the PNA-DNA-DiSC₂(5) conjugate did not fluoresce, probably due to the aggregation of the dyes on the hybrids. Here, we report fluorescence detection of micromolar quantity of DNAs using DiSC₂(5) and a new version of peptide nucleic acid, cis-L-configurated oxy-peptide nucleic acid that contains pyrrolidine rings of cis-L-configuration (POPNA) (Figure 1).⁴ POPNA is more water-soluble than Nielsen-type PNA and shows a sharp melting curve when hybridized with complementary DNA. The fluorescence detection of the POPNA-DNA hybrids will open a way to a sensitive and highly

Figure 1. Chemical structures of Nielsen-type PNA, POPNA $[=po(A_9)]$, dT₉, and DiSC₂(5).

Figure 2. UV–vis spectra of $DiSC_2(5)$ in the 1:1 mixture of $po(A_9)$ and dT_9 at 5 °C (bold solid line) and at 50 °C (solid line). UV–vis spectra of $DiSC_2(5)$ alone at 5 °C (bold broken line) and at 50 °C (broken line). $[po(A_9)] = [dT_9] = [DiSC_2(5)] = 5 \,\mu M.^5$

specific DNA detection for successful SNP analyses.

An adenine 9-mer of POPNA (po(A₉)) was mixed with dT₉ at 5 °C ($T_m = 27.3$ °C, [po(A₉)] = [dT₉] = 1.0 µM), and then DiSC₂(5) was added to the hybrid in aqueous solution. UV spectrum of the mixture after annealing for 1 h at 5 °C is shown in Figure 2. The absorption peak of DiSC₂(5) in the presence of po(A₉)–dT₉ hybrid is red-shifted by 20 nm (668 nm), compared with the absorption peak of monomeric DiSC₂(5) in aqueous solution (648 nm). It is well known that absorption of DiSC₂(5) monomer shows a red-shift in hydrophobic environment.^{3a} When the hybrid dissociated at 50 °C, the absorption of DiSC₂(5) in the po(A₉)–dT₉ hybrid and becomes free when the hybrid dissociated.

The binding of DiSC₂(5) to po(A₉)–dT₉ hybrid is also evident from induced CD spectra in Figure 3. With a gradual addition of DiSC₂(5) to the hybrid, induced CD peak of DiSC₂(5) at 668 nm emerged, indicating that the bound DiSC₂(5) exists in chiral environment, probably in the minor groove of the double-stranded hybrid. The CD titration curve for DiSC₂(5) with the hybrid suggests a 1:1 stoichiometry between the DiSC₂(5) and the hybrid (inset in Figure 3). The 1:1 stoichiometry is in contrast to the Nielsen-type PNA–DNA–DiSC₂(5) system.^{3a} In the latter system, the DiSC₂(5) molecules bind to the hybrid as aggregates that can be observed visibly as the color changes. No fluorescence can be detected from the aggregates of DiSC₂(5). For the fluorescence detection of hybrid formation, it is essential that the chromophores bind to the hybrids as monomeric forms.

The monomeric $DiSC_2(5)$ bound to $po(A_9)$ -dT₉ hybrid may induce strong fluorescence, because the chromophore is isolated

Figure 3. CD spectra of various concentrations of $\text{DiSC}_2(5)$ in a $\text{po}(A_9)-\text{dT}_9$ hybrid. Molar ratios of $\text{DiSC}_2(5)$ to the hybrid are: 0, 0.5, 1, and 2. $[\text{po}(A_9)] = [\text{dT}_9] = 5 \,\mu\text{M}$. Inset: CD intensity at 668 nm vs $[\text{DiSC}_2(5)]/[\text{po}(A_9)-\text{dT}_9 \text{ hybrid}]^{.5}$

Figure 4. Temperature dependence of fluorescence intensity from DiSC₂(5) in the po(A₉)–dT₉ 1:1 mixture at 688 nm, $\lambda_{ex} = 668$ nm. Inset: fluorescence spectra of DiSC₂(5) in the presence of po(A₉) and/or dT₉ and in the absence of po(A₉)– dT₉ at 5 °C. [po(A₉)] = [dT₉] = [DiSC₂(5)] = 1 μ M.⁵

and cannot be quenched by collisions with other molecules. Furthermore, the nonradiative decay of the excited state of $DiSC_2(5)$ will be more or less retarded by the constraints.^{3d} Fluorescence spectra of $DiSC_2(5)$ complexed onto $po(A_9)$ -dT₉ hybrid is shown in the inset of Figure 4. When the complex was exited at 668 nm at 5 $^{\circ}$ C where po(A₉) was completely hybridized with dT_9 , strong fluorescence of DiSC₂(5) was observed at 688 nm. At 50 °C, where the $po(A_9)$ –dT₉ mixture was in the dissociated state, little fluorescence of $DiSC_2(5)$ was detected. $DiSC_2(5)$ in the absence of the hybrid or with only $po(A_9)$ or only dT_9 did not fluoresce even at 5 °C. Temperature dependence of the fluorescence intensity in the presence of $po(A_9)$ -dT₉ 1:1 mixture was measured and plotted in Figure 4. At low temperatures where $po(A_9)$ hybridized with dT_9 , strong fluorescence was observed. The fluorescence gradually reduced its intensity and then sharply decreased around $T_{\rm m}$ (27.3 °C) of the po(A₉)–dT₉ hybrid. At high temperatures where the hybrid dissociated, no fluorescence was detected. The profile of the temperature dependence of fluorescence intensity is consistent with that of UV melting curve of the po(A₉)-dT₉ hybrid. Accordingly, the temperature dependence of fluorescence intensity reflects the melting curve of the hybrid.

Very interestingly, the enhanced fluorescence of DiSC₂(5) bound to the POPNA–DNA hybrid was observed only on a fully-matched pair. The DiSC₂(5) in the presence of po(A₉)– dT_4AT_4 hybrid ($T_m = 16.4$ °C) and po(A₉)– dT_7AT hybrid

Figure 5. Fluorescence spectra of $DiSC_2(5)$ in the presence of $po(A_9)$ – dT_9 hybrid, $po(A_9)$ – dT_4AT_4 hybrid, or $po(A_9)$ – dT_7AT hybrid at 5 °C. $[po(A_9)] = [dT_9] = [DiSC_2(5)] = 1 \,\mu M.^5$

 $(T_{\rm m} = 17.0 \,^{\circ}{\rm C})$ showed much weaker fluorescence, even at 5 °C where the two mixtures are in the hybrid state (Figure 5). Furthermore, the fluorescence of the mismatched hybrids did not show marked intensity change with the hybrid formation. The DiSC₂(5) in the presence of po(A₉)–dT₄AT₄ hybrid showed only 1.6-fold fluorescent enhancement with lowering the temperature from 50 to 5 °C. In the case of po(A₉)–dT₇AT hybrid, a somewhat larger enhancement was observed (13.1-fold). These enhancement ratios are, however, much smaller than that observed for po(A₉)–dT₉ hybrid (44.6-fold). The somewhat large enhancement for po(A₉)–dT₇AT hybrid may be interpreted in terms of a partial hybridization between the seven base pairs.

The above results indicate that the $DiSC_2(5)$ can discriminate not only dissociated/hybridized forms of POPNA–DNA mixture but also full-match/single-mismatch sequences in the hybrids, at least for 9-mer sequences of DNAs with high population of T units. Furthermore, the fluorescence detection of fully-matched POPNA–DNA hybrids does not require washing process to remove free $DiSC_2(5)$ from the mixture.

To conclude, the $DiSC_2(5)$ –POPNA–DNA mixture provides a simple, sensitive, and specific detection system for fullymatched POPNA–DNA hybrids, at least for 9-mer DNAs with high population of T units.

References and Notes

- a) L. M. Wilhelmsson, B. Nordén, K. Mukherjee, M. T. Dulay, and R. N. Zare, *Nucleic Acids Res.*, **30**, e3 (2002). b) M. Komiyama, S. Ye, X. Liang, Y. Yamamoto, T. Tomita, J.-M. Zhou, and H. Aburatani, *J. Am. Chem. Soc.*, **125**, 3758 (2003). c) B. Ren, J.-M. Zhou, and M. Komiyama, *Nucleic Acids Res.*, **32**, e42 (2004).
- 2 a) P. E. Nielsen, M. Egholm, R. H. Berg, and O. Buchardt, *Science*, **254**, 1497 (1991). b) P. E. Nielsen and M. Egholm, in "Peptide Nucleic Acids: Protocols and Applications," 2nd ed., ed. by P. E. Nielsen, Horizon Bioscience, U. K. (2004), Chap. 1, p 1.
- 3 a) J. O. Smith, D. A. Olson, and B. A. Armitage, J. Am. Chem. Soc., 121, 2686 (1999). b) B. Datta and B. A. Armitage, J. Am. Chem. Soc., 123, 9612 (2001). c) S. A. Kushon, J. P. Jordan, J. L. Seifert, H. Nielsen, P. E. Nielsen, and B. A. Armitage, J. Am. Chem. Soc., 123, 10805 (2001). d) J. L. Seifert, R. E. Connor, S. A. Kushon, M. Wang, and B. A. Armitage, J. Am. Chem. Soc., 121, 2987 (1999).
- 4 a) M. Shigeyasu, M. Kuwahara, M. Sisido, and T. Ishikawa, *Chem. Lett.*, **2001**, 634. b) M. Kitamatsu, M. Shigeyasu, T. Okada, and M. Sisido, *Chem. Commun.*, **2004**, 1208.
- 5 These experiments were measured in aqueous buffer (100 mM of NaCl, 10 mM of NaH₂PO₄, and 0.1 mM of EDTA, pH 7.0).